วันอาทิตย์ที่ 6 กันยายน พ.ศ. 2552

คำถาม
1.ธาตุกัมมันตรังสี (Radioactive Elements) หมายถึง
- นิวไคลด์หรือธาตุที่มีสภาพไม่เสถียร
2. กัมมัตภาพรังสี (Radioactivity) คือ
- ปรากฎการณ์อย่างหนึ่งของสารที่มีสมบัติในการแผ่รังสีออกมาได้เอง
3. กัมมันตภาพรังสี ที่แผ่ออกมามีอยู่ 3 ชนิดด้วยกัน คือ
- รังสีแอลฟา รังสีเบตา และรังสีแกมมา
4. ประโยชน์ของธาตุกัมมันตรังสีมีกี่อย่างอะไรบ้าง
- 4 อย่าง 1.) ด้านธรณีวิทยา 2.) ด้านการแพทย์ 3.) ด้านเกษตรกรรม 4.) ด้านอุตสาหกรรม
5. โทษของธาตุกัมมันตรังสีมีหลักในการป้องกันอันตรายอย่างไรบ้าง
- ใช้เวลาเข้าใกล้บริเวณที่มีกัมมันตภาพรังสีให้น้อยที่สุด
- พยายามอยู่ให้***งจากกัมมันตภาพรังสีให้มากที่สุดเท่าที่จะทำได้
- ใช้ตะกั่ว คอนกรีต น้ำ หรือพาราฟิน เป็นเครื่องกำบังบริเวณที่มีการแผ่รังสี
6. พลังงานนิวเคลียร์ หมายถึง
- พลังงานไม่ว่าลักษณะใดๆก็ตาม ซึ่งเกิดจากนิวเคลียสอะตอมโดย
7. พลังงานนิวเคลียร์ บางครั้งใช้แทนกันกับคำว่า อะไร
- พลังงานปรมาณู
8. ความหมายของปรมาณู หรืออะตอม (atom) คือ
- ชิ้นส่วนที่เล็กที่สุดของสสารที่ยังคงคุณสมบัติของธาตุอยู่ได้
9. อะตอมประกอบด้วย 2 ส่วน คือ
- ส่วนแกนกลางที่เรียกว่านิวเคลียส ซึ่งเป็นส่วนที่มีมวลสารและอยู่ตรงใจกลางของอะตอม
- ส่วนกรอบคืออาณาบริเวณที่อนุภาคอิเล็กตรอนหมุนวนรอบนิวเคลียสอีกทีหนึ่ง
10. รังสีแกมมาหมายถึง เ
- เป็นคลื่นแม่เหล็กไฟฟ้าที่มีความยาวคลื่นสั้นมาก มีจุดกำเนิดจากนิวเคลียส มีอำนาจทำให้เกิดการแตกตัวน้อยมาก แต่มีความสามารถทะลุทะลวงสูง

วันจันทร์ที่ 17 สิงหาคม พ.ศ. 2552

ธาตุกัมมันตรังสี (อังกฤษ: radioactive element) คือธาตุพลังงานสูงกลุ่มหนึ่งที่สามารถแผ่รังสี แล้วกลายเป็นอะตอมของธาตุใหม่ได้ มีประวัติการค้นพบดังนี้
รังสีเอกซ์ ถูกค้นพบโดย Conrad Röntgen อย่างบังเอิญเมื่อปี ค.ศ. 1895
ยูเรเนียม (Uranium) ค้นพบโดย Becquerel เมื่อปี ค.ศ. 1896 โดยเมื่อเก็บยูเรเนียมไว้กับฟิล์มถ่ายรูป ในที่มิดชิด ฟิล์มจะมีลักษณะ เหมือนถูกแสง จึงสรุปได้ว่าน่าจะมีการแผ่รังสีออกมาจากธาตุยูเรเนียม เขาจึงตั้งชื่อว่า Becquerel Radiation
พอโลเนียม (Polonium) ถูกค้นพบและตั้งชื่อโดย มารี กูรี ตามชื่อบ้านเกิด (โปแลนด์) เมื่อปี ค.ศ. 1898 หลังจากการสกัดเอายูเรเนียมออกจาก Pitchblende หมดแล้ว แต่ยังมีการแผ่รังสีอยู่ สรุปได้ว่ามีธาตุอื่นที่แผ่รังสีได้อีกแฝงอยู่ใน Pitchblende นอกจากนี้ กูรียังได้ตั้งชื่อเรียกธาตุที่แผ่รังสีได้ว่า ธาตุกัมมันตรังสี (Radioactive Element) และเรียกรังสีนี้ว่า กัมมันตภาพรังสี (Radioactivity)
เรเดียม (Radium) ถูกตั้งชื่อไว้เมื่อปี ค.ศ. 1898 หลังจากสกัดเอาพอโลเนียมออกจากพิตช์เบลนด์หมดแล้ว พบว่ายังคงมีการแผ่รังสี จึงสรุปว่ามีธาตุอื่นที่แผ่รังสีได้อีกใน Pitchblende ในที่สุดกูรีก็สามารถสกัดเรเดียมออกมาได้จริง ๆ จำนวน 0.1 กรัม ในปี ค.ศ. 1902
ด้วยเหตุนี้นี่เอง ทำให้ผู้ค้นพบได้รับรางวัลต่าง ๆ ดังนี้
Conrad Röntgen ได้รับรางวัลโนเบลสาขาฟิสิกส์ ปี ค.ศ. 1901
Pierre, Marie Curie ได้รับรางวัลเหรียญเดวี่จากราชบัณฑิตยสภาแห่งสหราชอาณาจักร ปี ค.ศ. 1903
Pierre, Marie Curie และ Henri Becquerel ได้รับรางวัลโนเบลสาขาฟิสิกส์ ปี ค.ศ. 1903
Mme Curie ได้รับรางวัลโนเบลสาขาเคมี ปี ค.ศ. 1911
ส่วนรังสีที่แผ่ออกมาจากธาตุนั้น แบ่งเป็น 3 ชนิดคือ
รังสีแอลฟา (สัญลักษณ์: α) คุณสมบัติ เป็นนิวเคลียสของอะตอมฮีเลียม (4 2He) มี p+ และ n อย่างละ 2 อนุภาค ประจุ +2 เลขมวล 4 อำนาจทะลุทะลวงต่ำ เบี่ยงเบนในสนามไฟฟ้าเข้าหาขั้วลบ
รังสีบีตา (สัญลักษณ์: β) คุณสมบัติ เหมือน e- อำนาจทะลุทะลวงสูงกว่า α 100 เท่า ความเร็วใกล้เสียง เบี่ยงเบนในสนามไฟฟ้าเข้าหาขั้วบวก
รังสีแกมมา (สัญลักษณ์: γ) คุณสมบัติเป็นคลื่นแม่เหล็กไฟฟ้า (Electromagnetic Wave) ที่มีความยาวคลื่นสั้นมากไม่มีประจุและไม่มีมวล อำนาจทะลุทะลวงสูงมาก ไม่เบี่ยงเบนในสนามไฟฟ้า เกิดจากการที่ธาตุแผ่รังสีแอลฟาและแกมมาแล้วยังไม่เสถียร มีพลังงานสูง จึงแผ่เป็นคลื่นแม่เหล็กไฟฟ้าเพื่อลดระดับพลังงาน

วันอาทิตย์ที่ 9 สิงหาคม พ.ศ. 2552

สนามของแรง

บริเวณใดที่มีแรงกระทำต่อวัตถุ บริเวณนั้นมีสนาม(field) เราสามารถรับรู้ได้ว่าบริเวณใด มีสนาม โดยดูได้จากผลของแรง ที่กระทำ






สนามแม่เหล็ก






คือบริเวณที่แรงแม่เหล็กกระทำหมายถึง วัตถุที่สามารถออก แรงดูดหรือผลัก สารแม่เหล็กได้ สารแม่เหล็ก หมายถึง สารที่มีแรงแม่เหล็กกระทำ เมื่ออยู่ในบริเวณที่มีสนามแม่เหล็ก สารแม่เหล็กอาจถูกดูดหรือผลักก็ได้ ขั้วแม่เหล็ก หมายถึง บริเวณหนึ่งในแท่งแม่เหล็กที่มีอำนาจแม่เหล็กมากที่สุด เมื่อเทียบกับบริเวณอื่น ๆ ได้แก่ บริเวณที่อยู่ใกล้ปลายแท่งแม่เหล็ก มี 2 ขั้วคือ
1. ขั้วเหนือ(north pole = N)
2. ขั้วใต้ (south pole






แนวการเรียงตัวของผงเหล็กรอบ
แท่งแม่เหล็ก เรียกว่า เส้นสนามแม่เหล็ก หรือเส้นแรงแม่เหล็ก




ทฤษฎีแรงแม่เหล็ก




1. ภายนอกแท่งแม่เหล็ก เส้นแรงแม่เหล็กจะมีทิศออกจาก ขั้วเหนือ(N) พุ่งเข้าสู่ขั้วใต้(S)




2. ภายในแท่งแม่เหล็ก
เส้นแรงแม่เหล็กจะมีทิศออกจาก
ขั้วใต้(S) พุ่งเข้าสู่ขั้วเหนือ(N)




สนามไฟฟ้าสนามไฟฟ้า (electric field) คือปริมาณซึ่งใช้บรรยายการที่ประจุไฟฟ้าทำให้เกิดแรงกระทำกับอนุภาคมีประจุภายในบริเวณโดยรอบ หน่วยของสนามไฟฟ้าคือ นิวตันต่อคูลอมบ์ หรือโวลต์ต่อเมตร (มีค่าเท่ากัน) สนามไฟฟ้านั้นประกอบขึ้นจากโฟตอนและมีพลังงานไฟฟ้าเก็บอยู่ ซึ่งขนาดของความหนาแน่นของพลังงานขึ้นกับกำลังสองของความหนานแน่นของสนาม ในกรณีของไฟฟ้าสถิต สนามไฟฟ้าประกอบขึ้นจากการแลกเปลี่ยนโฟตอนเสมือนระหว่างอนุภาคมีประจุ ส่วนในกรณีคลื่นแม่เหล็กไฟฟ้านั้น สนามไฟฟ้าเปลี่ยนแปลงไปพร้อมกับสนามแม่เหล็ก โดยมีการไหลของพลังงานจริง และประกอบขึ้นจากโฟตอนจริง

[แก้] นิยามและที่มา
นิยามทางคณิตศาสตร์ของสนามไฟฟ้ากำหนดไว้ดังนี้ กฎของคูลอมบ์ (Coulomb's law) กล่าวว่าแรงกระทำระหว่างอนุภาคมีประจุสองอนุภาค มีค่าเท่ากับ
เมื่อ
ε0 (อ่านว่า เอปสิลอน-นอท) คือ สภาพยอมของสุญญากาศ ซึ่งเป็นค่าคงตัวทางฟิสิกส์ตัวหนึ่ง;
q1 และ q2 คือ ประจุไฟฟ้าของอนุภาคแต่ละตัว;
r คือ ระยะทางระหว่างอนุภาคทั้งสอง;
คือ เวกเตอร์หนึ่งหน่วย ซึ่งชี้จากอนุภาคตัวหนึ่งไปอีกตัว
ในระบบหน่วยเอสไอ หน่วยของแรงคือ นิวตัน, หน่วยของประจุคือคูลอมบ์, หน่วยของระยะทางคือเมตร ดังนั้นε0 มีหน่วยเป็น C2/ (N·m2). ค่านี้ได้หาได้จากการทดลองโดยไม่มีทฤษฎีกำหนด
สมมุติว่าอนุภาคตัวหนึ่งอยู่นิ่ง และอนุภาคอีกตัวเป็น "ประจุทดสอบ" จากสมการด้านบนจะเห็นว่าแรงกระทำที่เกิดขึ้นบนประจุทดสอบนั้นแปรผันตรงกับขนาดของประจุทดสอบ นิยามของสนามไฟฟ้าคืออัตราส่วนคงที่ระหว่างขนาดของประจุและขนาดของแรงที่เกิดขึ้น คือ
สมการนี้เป็นจริงเฉพาะในกรณีไฟฟ้าสถิต (คือกรณีที่ประจุไม่มีการเคลื่อนที่) เท่านั้น ถ้าพิจารณากรณีทั่วไปซึ่งประจุมีการเคลื่อนที่ด้วย สมการด้านบนจะต้องกลายเป็นสมการของลอเรนซ์

[แก้] คุณสมบัติ
สมการที่ (1) แสดงให้เห็นว่าสนามไฟฟ้ามีค่าขึ้นกับตำแหน่ง สนามไฟฟ้าจากประจุตัวหนึ่งจะมีค่าลดลงเรื่อยๆ ณ ตำแหน่งที่ห่างออกจากประจุนั้น โดยขนาดจะลดลงเป็นอัตราส่วนของกำลังสองของระยะทางจากตัวประจุ
สนามไฟฟ้าปฏิบัติตัวตามหลักการซ้อนทับ นั่นคือ หากมีประจุไฟฟ้ามากกว่าหนึ่งตัวในระบบแล้ว สนามไฟฟ้า ณ ตำแหน่งใดๆ ในระบบจะมีค่าเท่ากับผลรวมแบบเวกเตอร์ของสนามไฟฟ้าซึ่งเกิดจากประจุแต่ละตัวเดี่ยวๆ
หากเราขยายหลักการนี้ไปสู่กรณีที่ประจุไฟฟ้ามีจำนวนเป็นอนันต์ สมการจะกลายเป็น
เมื่อ ρ คือความหนาแน่นของประจุ หรือจำนวนประจุไฟฟ้าต่อหน่วยปริมาตร
สนามไฟฟ้านั้นมีค่าเท่ากับค่าลบของ เกรเดียนต์ของศักย์ไฟฟ้า



สนามโน้มถ่วง
เมื่อปล่อยวัตถุ วัตถุจะตกสู่พื้นโลกเนื่องจากโลกมีสนามโน้มถ่วง (gravitational field) อยู่รอบโลก สนามโน้มถ่วงทำให้เกิดแรงดึงดูด
กระทำต่อมวลของวัตถุทั้งหลาย แรงดึงดูดนี้เรียกว่า แรงโน้มถ่วง (gravitational force) สนามโน้มถ่วงเขียนแทนด้วยสัญลักษณ์ g
และสนามมีทิศพุ่ง สู่ศูนย์กลางของโลก สนามโน้มถ่วง
ณ ตำแหน่งต่างๆบนผิวโลก มีค่าประมาณ 9.8 นิวตันต่อกิโลกรัม
สนามโน้มถ่วงของโลกที่บางตำแหน่งจากผิวโลก
ระยะวัดจากผิวโลก (km)
สนามโน้มถ่วง (N/kg)
หมายเหตุ
ที่ผิวโลก
9.80
-
10
9.77
เพดานบินของเครื่องบินโดยสาร
400
8.65
ความสูงของสถานีอวกาศนานาชาติ ยานขนส่งอวกาศ
35700
0.225
ระดับความสูงของดาวเทียมสื่อสารคมนาคม
384000
0.0026
ระยะทางเฉลี่ยระหว่างโลกและดวงจันทร์
ดาวฤกษ์ โลก ดวงจันทร์ ดาวเคราะห์ดวงอื่นๆ
และบริวารของดาวเคราะห์
ให้ระบบสุริยะรวมทั้งสรรพวัตถุทั้งหลายก็มีสนามโน้มถ่วงรอบตัวเอง
โดยสนามโน้มถ่วงเหล่านี้มีค่าต่างกันไป
การเคลื่อนที่ของวัตถุในสนามโน้มถ่วง
วัตถุที่อยู่ในสนามโน้มถ่วงของโลกจะถูกโลกดึงดูด
ดังนั้น เมื่อปล่อยวัตถุให้ตกบริเวณใกล้ผิวโลก แรงดึงดูดของโลก
จะทำให้วัตถุเคลื่อนที่เร็วขึ้น นั่นคือวัตถุมีความเร่ง
การตกของวัตถุที่มีมวลต่างกันในสนามโน้มถ่วงวัตถุ
จะเคลื่อนที่ด้วยความเร่งคงตัว เรียกว่า ความเร่งโน้มถ่วง
(gravitationalacceleration) มีทิศทางเข้าสู่ศูนย์กลางของโลก
ความเร่งโน้มถ่วงที่ผิวโลกมีค่าต่างกันตามตำแหน่งทาง ภูมิศาสตร์
ในการตกของวัตถุ
วัตถุจะเคลื่อนที่ลงด้วยความเร่งโน้มถ่วง 9.8เมตรต่อวินาทียกกำลังสอง
ซึ่งหมายความว่าความเร็วของวัตถุ
จะเพิ่มขึ้นวินาทีละ 9.8 เมตรต่อวินาที


ถ้าโยนวัตถุขึ้นในแนวดิ่ง วัตถุในสนามโน้มถ่วงจะเคลื่อนที่
ขึ้นด้วยความเร่งโน้มถ่วง g โดยมีทิศเข้าสู่ศูนย์กลางโลก


ทำให้วัตถุซึ่งเคลื่อนที่ขึ้นมีความเร็วลดลง
วินาทีละ9.8เมตรต่อวินาที จนกระทั่งความเร็วสุดท้ายเป็นศูนย์
จากนั้นแรงดึงวัตถุให้ตกกลับสู่โลกด้วยความเร่งเท่าเดิม
การเคลื่อนที่ขึ้นหรือลงของวัตถุที่บริเวณใกล้ผิวโลก
ถ้าคำนึงถึงแรงโน้มถ่วงเพียงแรงเดียว โดยไม่คิดถึงแรงอื่น
เช่น แรงต้านอากาศ หรือแรงลอยตัวของวัตถุในอากาศ


แล้ววัตถุจะเคลื่อนที่ด้วย ความเร่งโน้มถ่วง
ที่มีค่าคงตัวเท่ากับ 9.8 เมตรต่อวินาที่ยกกำลังสองในทิศลง
เรียกการเคลื่อนที่แบบนี้ว่า การตกแบบเสรี(free fall)
แรงโน้มถ่วงของโลกที่กระทำต่อวัตถุก็คือ น้ำหนัก (weight)ของวัตถุบนโลก หาได้จากสมการ W=mgเมื่อ m เป็นมวลของวัตถุที่มีหน่วยเป็นกิโลกรัม(kg) g เป็นความเร่งโน้มถ่วง
ณ ตำแหน่งที่วัตถุวางอยู่ มีหน่วยเป็นเมตรต่อวินาทียกกำลังสอง
และW เป็นน้ำหนักของวัตถุุที่มีหน่วยเป็นนิวตัน (N)









แรงและการเคลื่อนที่

แรงคือ ปริมาณทางฟิสิกส์ที่มีผลต่อ ความเร่ง ในการเคลื่อนที่ของวัตถุ หรือการเปลี่ยนขนาดและรูปร่างของวัตถุ แรงเป็น ปริมาณเวกเตอร์ มีทั้งขนาดและทิศทาง มีหน่วยเป็น นิวตัน
- เมื่อแรงกระทำในทิศทางเดียวกัน ผลลัพธ์ (แรงลัพธ์, FR) จะเพิ่มมากขึ้น ชนิดของแรงที่สำคัญคือ แรงโน้มถ่วง แรงแม่เหล็ก แรงไฟฟ้า และ แรงนิวเคลียร์


1. เวกเตอร์ของแรง แรง (force) หมายถึง สิ่งที่สามารถทำให้วัตถุที่อยู่นิ่งเคลื่อนที่หรือทำให้วัตถุที่กำลังเคลื่อนที่มีความเร็วเพิ่มขึ้นหรือช้าลง หรือเปลี่ยนทิศทางการเคลื่อนที่ของวัตถุได้
ปริมาณทางฟิสิกส์ มี 2 ชนิด คือ 1. ปริมาณเวกเตอร์ (vector quality) หมายถึง ปริมาณที่มีทั้งขนาดและทิศทาง เช่น แรง ความเร็ว ความเร่ง โมเมนต์ โมเมนตัม น้ำหนัก เป็นต้น 2. ปริมาณสเกลาร์ (scalar quality) หมายถึง ปริมาณที่มีแต่ขนาดอย่างเดียว ไม่มีทิศทาง เช่น เวลา พลังงาน ความยาว อุณหภูมิ เวลา พื้นที่ ปริมาตร อัตราเร็ว เป็นต้น
การเขียนเวกเตอร์ของแรง การเขียนใช้ความยาวของส่วนเส้นตรงแทนขนาดของแรง และหัวลูกศรแสดงทิศทางของแรง


2. การเคลื่อนที่ในหนึ่งมิติ 2.1 การเคลื่อนที่ในแนวเส้นตรง แบ่งเป็น 2 แบบ คือ 1. การเคลื่อนที่ในแนวเส้นตรงที่ไปทิศทางเดียวกันตลอด เช่น โยนวัตถุขึ้นไปตรงๆ รถยนต์ กำลังเคลื่อนที่ไปข้างหน้าในแนวเส้นตรง 2. การเคลื่อนที่ในแนวเส้นเส้นตรง แต่มีการเคลื่อนที่กลับทิศด้วย เช่น รถแล่นไปข้างหน้าในแนวเส้นตรง เมื่อรถมีการเลี้ยวกลับทิศทาง ทำให้ทิศทางในการเคลื่อนที่ตรงข้ามกัน 2.2 อัตราเร็ว ความเร่ง และความหน่วงในการเคลื่อนที่ของวัตถุ 1. อัตราเร็วในการเคลื่อนที่ของวัตถุ คือระยะทางที่วัตถุเคลื่อนที่ใน 1 หน่วยเวลา 2. ความเร่งในการเคลื่อนที่ หมายถึง ความเร็วที่เพิ่มขึ้นใน 1 หน่วยเวลา เช่น วัตถุตกลงมาจากที่สูงในแนวดิ่ง 3. ความหน่วงในการเคลื่อนที่ของวัตถุ หมายถึง ความเร็วที่ลดลงใน 1 หน่วยเวลา เช่น โยนวัตถุขึ้นตรงๆ ไปในท้องฟ้า

3. การเคลื่อนที่แบบต่างๆ ในชีวิตประจำวัน 3.1 การเคลื่อนที่แบบวงกลม หมายถึง การเคลื่อนที่ของวัตถุเป็นวงกลมรอบศูนย์กลาง เกิดขึ้นเนื่องจากวัตถุที่กำลังเคลื่อนที่จะเดินทางเป็นเส้นตรงเสมอ แต่ขณะนั้นมีแรงดึงวัตถุเข้าสู่ศูนย์กลางของวงกลม เรียกว่า แรงเข้าสู่ศูนย์กลางการเคลื่อนที่ จึงทำให้วัตถุเคลื่อนที่เป็นวงกลมรอบศูนย์กลาง เช่น การโคจรของดวงจันทร์รอบโลก 3.2 การเคลื่อนที่ของวัตถุในแนวราบ เป็นการเคลื่อนที่ของวัตถุขนานกับพื้นโลก เช่น รถยนต์ที่กำลังแล่นอยู่บนถนน 3.3 การเคลื่อนที่แนววิถีโค้ง เป็นการเคลื่อนที่ผสมระหว่างการเคลื่อนที่ในแนวดิ่งและในแนวราบ


กฎการเคลื่อนที่ของนิวตัน นิวตัน ได้สรุปหลักการเกี่ยวกับการเคลื่อนที่ของวัตถุทั้งที่อยู่ในสภาพอยู่นิ่งและในสภาพเคลื่อนที่ ดังนี้
กฎข้อที่ 1 วัตถุถ้าหากว่ามีสภาพหยุดนิ่งหรือเคลื่อนที่เป็นเส้นตรงด้วยความเร็วคงที่ มันยังจะคงสภาพเช่นนี้ต่อไป หากไม่มีแรงที่ไม่สมดุลจากภายนอกมากระทำ
กฎข้อที่ 2 ถ้าหากมีแรงที่ไม่สมดุลจากภายนอกมากระทำต่อวัตถุ แรงที่ไม่สมดุลนั้นจะเท่ากับอัตราการเปลี่ยนแปลงโมเมนต์ตัมเชิงเส้นของวัตถุ
กฎข้อที่ 3 ทุกแรงกริยาที่กระทำ จะมีแรงปฏิกิริยาที่มีขนาดที่เท่ากันแต่มีทิศทางตรงกันข้ามกระทำตอบเสมอ
กฎการเคลื่อนที่ข้อที่ 1 และข้อที่ 3 เราได้ใช้ในการศึกษาในวิชาสถิตยศาสตร์ มาแล้วสำหรับในการศึกษาพลศาสตร์ เราจึงสนใจในกฎการเคลื่อนที่ข้อที่สองมากกว่า


แรงในแบบต่างๆ
1. ชนิดของแรง 1.1 แรงย่อย คือ แรงที่เป็นส่วนประกอบของแรงลัพธ์ 1.2 แรงลัพธ์ คือ แรงรวมซึ่งเป็นผลรวมของแรงย่อย ซึ่งจะต้องเป็นการรวมกันแบบปริมาณเวกเตอร์ 1.3 แรงขนาน คือ แรงที่ที่มีทิศทางขนานกัน ซึ่งอาจกระทำที่จุดเดียวกันหรือต่างจุดกันก็ได้ มีอยู่ 2 ชนิด - แรงขนานพวกเดียวกัน หมายถึง แรงขนานที่มีทิศทางไปทางเดียวกัน - แรงขนานต่างพวกกัน หมายถึง แรงขนานที่มีทิศทางตรงข้ามกัน 1.4 แรงหมุน หมายถึง แรงที่กระทำต่อวัตถุ ทำให้วัตถุเคลื่อนที่โดยหมุนรอบจุดหมุน ผลของการหมุนของ เรียกว่า โมเมนต์ เช่น การปิด-เปิด ประตูหน้าต่าง 1.5 แรงคู่ควบ คือ แรงขนานต่างพวกกันคู่หนึ่งที่มีขนาดเท่ากัน แรงลัพธ์มีค่าเป็นศูนย์ และวัตถุที่ถูกแรงคู่ควบกระทำ 1 คู่กระทำ จะไม่อยู่นิ่งแต่จะเกิดแรงหมุน 1.6 แรงดึง คือ แรงที่เกิดจากการเกร็งตัวเพื่อต่อต้านแรงกระทำของวัตถุ เป็นแรงที่เกิดในวัตถุที่ลักษณะยาวๆ เช่น เส้นเชือก เส้นลวด 1.7 แรงสู่ศูนย์กลาง หมายถึง แรงที่มีทิศเข้าสู่ศูนย์กลางของวงกลมหรือทรงกลมอันหนึ่งๆ เสมอ 1.8 แรงต้าน คือ แรงที่มีทิศทางต่อต้านการเคลื่อนที่หรือทิศทางตรงข้ามกับแรงที่พยายามจะทำให้วัตถุเกิดการเคลื่อนที่ เช่น แรงต้านของอากาศ แรงเสียดทาน 1.9 แรงโน้มถ่วงของโลก คือ แรงดึงดูดที่มวลของโลกกระทำกับมวลของวัตถุ เพื่อดึงดูดวัตถุนั้นเข้าสู่ศูนย์กลางของโลก - น้ำหนักของวัตถุ เกิดจากความเร่งเนื่องจากความโน้มถ่วงของโลกมากกระทำต่อวัตถุ 1.10 แรงกิริยาและแรงปฏิกิริยา - แรงกิริยา คือ แรงที่กระทำต่อวัตถุที่จุดจุดหนึ่ง อาจเป็นแรงเพียงแรงเดียวหรือแรงลัพธ์ของแรงย่อยก็ได้ - แรงปฏิกิริยา คือ แรงที่กระทำตอบโต้ต่อแรงกิริยาที่จุดเดียวกัน โดยมีขนาดเท่ากับแรงกิริยา แต่ทิศทางของแรงทั้งสองจะตรงข้ามกัน 2. แรงกิริยาและแรงปฏิกิริยากับการเคลื่อนที่ของวัตถุ 2.1 วัตถุเคลื่อนที่ด้วยแรงกิริยา เป็นการเคลื่อนที่ของวัตถุตามแรงที่กระทำ เช่น การขว้างลูกหินออกไป 2.2 วัตถุเคลื่อนที่ด้วยแรงปฏิกิริยา เป็นการเคลื่อนที่ของวัตถุเนื่องจากมีแรงขับดันวัตถุให้เคลื่อนที่ไปในทิศทางตรงกันข้าม เช่น การเคลื่อนที่ของจรวด


แรงเสียดทาน
1. ความหมายของแรงเสียดทาน แรงเสียดทาน คือ แรงที่ต้านการเคลื่อนที่ของวัตถุซึ่งเกิดขึ้นระหว่างผิวสัมผัสของวัตถุ เกิดขึ้นทั้งวัตถุที่เคลื่อนที่และไม่เคลื่อนที่ และจะมีทิศทางตรงกันข้ามกับการเคลื่อนที่ของวัตถุ



W = น้ำหนักของวัตถุ
N = แรงที่กระทำต่อต่อวัตถุในแนวตั้งฉาก
F
f

แรงเสียดทานมี 2 ประเภท คือ 1. แรงเสียดทานสถิต คือ แรงเสียดทานที่เกิดขึ้นระหว่างผิวสัมผัสของวัตถุในสภาวะที่วัตถุได้รับแรงกระทำแล้วอยู่นิ่ง 2. แรงเสียดทานจลน์ คือ แรงเสียดทานที่เกิดขึ้นระหว่างผิวสัมผัสของวัตถุในสภาวะที่วัตถุได้รับแรงกระทำแล้วเกิดการเคลื่อนที่ด้วยความเร็วคงที่ 2. การลดและเพิ่มแรงเสียดทาน การลดแรงเสียดทาน สามารถทำได้หลายวิธี 1. การขัดถูผิววัตถุให้เรียบและลื่น 2. การใช้สารล่อลื่น เช่น น้ำมัน 3. การใช้อุปกรณ์ต่างๆ เช่น ล้อ ตลับลูกปืน และบุช 4. ลดแรงกดระหว่างผิวสัมผัส เช่น ลดจำนวนสิ่งที่บรรทุกให้น้อยลง 5. ออกแบบรูปร่างยานพาหนะให้อากาศไหลผ่านได้ดี การเพิ่มแรงเสียดทาน สามารถทำได้หลายวิธี 1. การทำลวดลาย เพื่อให้ผิวขรุขระ 2. การเพิ่มผิวสัมผัส เช่น การออกแบบหน้ายางรถยนต์ให้มีหน้ากว้างพอเหมาะ



โมเมนต์ของแรง
1. ความหมายของโมเมนต์ โมเมนต์ของแรง(Moment of Force)หรือโมเมนต์(Moment) หมายถึง ผลของแรงที่กระทำต่อวัตถุหมุนไปรอบจุดหมุน ดังนั้น ค่าโมเมนต์ของแรง ก็คือ ผลคูณของแรงนั้นกับระยะตั้งฉากจากแนวแรงถึงจุดหมุน (มีหน่วยเป็น นิวตัน-เมตร แต่หน่วย กิโลกรัม-เมตร และ กรัม-เซนติเมตร ก็ใช้ได้ในการคำนวน)
โมเมนต์ (นิวตัน-เมตร) = แรง(นิวตัน) X ระยะตั้งฉากจากแนวแรงถึงจุดหมุน (เมตร)

2. ชนิดของโมเมนต์ โมเมนต์ของแรงแบ่งตามทิศการหมุนได้เป็น 2 ชนิด 1. โมเมนต์ทวนเข็มนาฬิกา คือ โมเมนต์ของแรงที่ทำให้วัตถุหมุนทวนเข็มนาฬิกา 2. โมเมนต์ตามเข็มนาฬิกา คือ โมเมนต์ของแรงที่ทำให้วัตถุหมุนตามเข็มนาฬิกา 3. หลักการของโมเมนต์ ถ้ามีแรงหลายแรงกระทำต่อวัตถุชิ้นหนึ่ง แล้วทำให้วัตถุนั้นสมดุลจะได้ว่า
ผลรวมของโมเมนต์ทวนเข็มนาฬิกา = ผลรวมของโมเมนต์ตามเข็มนาฬิกา

L1
L2
ตาม
F1
F2
ทวน



เมื่อวัตถุอยู่ในสภาพสมดุล Mทวน = Mตาม F1 x L1 = F2 x L2
การนำหลักการเกี่ยวกับโมเมนต์ไปใช้ประโยชน์ โมเมนต์ หมายถึง ผลของแรงซึ่งกระทำต่อวัตถุ เพื่อให้วัตถุหมุนไปรอบจุดหมุน ความรู้เกี่ยวกับโมเมนต์ของแรง สมดุลของการหมุน และโมเมนต์ของแรงคู่ควบถูกนำมาใช้ประโยชน์ในด้านต่าง ๆ มากมาย โดยเฉพาะการประดิษฐ์เครื่องผ่อนแรงชนิดต่าง ๆ คาน เป็นวัตถุแข็ง ใช้ดีด – งัดวัตถุให้เคลื่อนที่รอบจุด ๆ หนึ่ง ทำงานโดยใช้หลักของโมเมนต์ นักวิทยาศาสตร์ใช้หลักการของโมเมนต์มาประดิษฐ์คาน ผู้รู้จักใช้คานให้เป็นประโยชน์คนแรก คือ อาร์คีเมเดส ซึ่งเป็นนักปราชญ์กรีกโบราณ เขากล่าวว่า “ถ้าฉันมีจุดค้ำและคานงัดที่ต้องการได้ละก็ ฉันจะงัดโลกให้ลอยขึ้น”
คานดีด คานงัด แบ่งออกได้ 3 ระดับ
คานอันดับ 1 จุดหมุน (F) อยู่ในระหว่าง แรงต้านของวัตถุ (W) กับ แรงพยายาม (E) ได้แก่ ชะแลง คีมตัดลวด กรรไกรตัดผ้า ตาชั่งจีน ค้อนถอนตะปู ไม้กระดก ฯลฯ
คานอันดับ 2 แรงต้านของวัตถุ (W) อยู่ระหว่าง จุดหมุน (F) กับแรงพยายาม (E)ได้แก่ เครื่องตัดกระดาษ เครื่องกระเทาะเม็ดมะม่วงหิมพานต์ รถเข็นดิน อุปกรณ์หนีบกล้วย ที่เปิดขวดน้ำอัดลม
คานอันดับ 3 แรงพยายาม (E) อยู่ในระหว่าง จุดหมุน (F) กับ แรงพยายามของวัตถุ (W)ได้แก่ คันเบ็ด แขนมนุษย์ แหนบ พลั่ว ตะเกียบ ช้อน ฯลฯ
ตัวอย่างที่ 1 คานยาว 2 เมตร นำเชือกผูกปลายคานด้านซ้าย 0.8 เมตร แขวนติดกับเพดาน มีวัตถุ 30 กิโลกรัมแขวนที่ปลายด้านซ้าย ถ้าต้องการให้คานสมดุลจะต้องใช้วัตถุกี่กิโลกรัมแขวนที่ปลายด้านขวา (คายเบาไม่คิดน้ำหนัก)




เมื่อให้ O เป็นจุดหมุน เมื่อคายสมดุลจะได้
0.8 m
A
ทวน
ตาม
1.2 m
W
30kg
B ผลรวมของโมเมนต์ทวนเข็มนาฬิกา = ผลรวมของโมเมนต์ตามเข็มนาฬิกา M ตาม = M ทวน 3 x 0.8 = W X 1.2 W = 20 kg ตอบ ดังนั้น จะต้องใช้วัตถุ 20 กิโลกรัม แขวนที่ปลายด้านขวา
ตัวอย่าง 2 คานสม่ำเสมอยาว 1 เมตร คานมีมวล 2 กิโลกรัม ถ้าแขวนวัตถุหนัก 40 และ 60 กิโลกรัมที่ปลายแต่ละข้าง
จะต้องใช้เชือกแขวนคานที่จุดใดคานจึงจะสมดุล

x -1
A
x
B
0.5 m
40kg
2kg
60kg
0.5 m



ผลรวมของโมเมนต์ทวนเข็มนาฬิกา = ผลรวมของโมเมนต์ตามเข็มนาฬิกา M ทวน = M ตาม
(40 x X) + (2 x ( X - 0.5)) = 60 x ( 1-X )
40 X + 2X - 1 = 60 - 60X
40X + 2X +60X = 60 + 1
102X = 61
X = 0.6 m
ตอบ ต้องแขวนเชือกห่างจากจุก A เป็นระยะ 0.6 เมตร
4. โมเมนต์ในชีวิตประจำวัน โมเมนต์เกี่ยวข้องกับกิจกรรมต่างๆ ในชีวิตประจำวันของเราเป็นอย่างมาก แม้แต่การเคลื่อนไหวของอวัยวะบางส่วนของร่างกาย การใช้เครื่องใช้หรืออุปกรณ์ต่างๆ หลายชนิด เช่น
5. ประโยชน์โมเมนต์ จากหลักการของโมเมนต์จะพบว่า เมื่อมีแรงขนาดต่างกันมากระทำต่อวัตถุคนละด้านกับจุดหมุนที่ระยะห่างจากจุดหมุนต่างกัน วัตถุนั้นก็สามารถอยู่ในภาวะสมดุลได้ หลักการของโมเมนต์จึงช่วยให้เราออกแรงน้อยๆ แต่สามารถยกน้ำหนักมากๆ ได้

http://www.ipst.ac.th/
http://www.google.co.th/
www.eduzone.com









วันอาทิตย์ที่ 21 มิถุนายน พ.ศ. 2552

แนะนำตัวกับอาจารย์

สวัสดีค่ะดิฉันชื่อ น.ส.อำไพ นิลวรรณ ได้สมัคร blog ตามคำสั่งของอาจารย์เรียบร้อยแล้ว ขอเรียนเชิญอาจารย์เข้าตรวจชมแล้วให้คำแนะนำได้ค่ะ ขอบคุณค่ะ